Updates

    Oracle Database 12c New Features for Developers

    0 comments
    Oracle Database 12c introduces a new multitenant architecture that makes it easy to deploy and manage database clouds. Oracle 12c is a pluggable database environment, where we can plug multiple databases into single database container. All these databases then share same background processes and memory. This helps in reducing the overhead of managing multiple databases.

    I have tried to compile some of the important new features of Oracle Database 12c. Below are the top 15 new features of Oracle Database 12c for Oracle Developer & professional.
    1. Sequence as Default Value
    With Oracle Database 12c, we can directly assign sequence nextval as a default value for a column, So you no longer need to create a trigger to populate the column with the next value of sequence, you just need to declare it with table definition.

    Example:

    create sequence test_seq start with 1 increment by 1 nocycle;

    create table test_tab
    (
        id number default test_seq.nextval primary key
    );

    2. Invisible column:
    Oracle Database 12c provides you the Invisible column feature. A Column defined as invisible, will not appear in generic queries (select * from). An Invisible Column need to be explicitly referred to in the SQL statement or condition. Also invisible column must be explicitly referred in INSERT statement to insert the database into invisible columns.

    Example:

    SQL> create table my_table
      2  (
      3  id number,
      4  name varchar2(100),
      5  email varchar2(100),
      6  password varchar2(100) INVISIBLE
      7  );
     
    SQL> ALTER TABLE my_table MODIFY (password visible); 

    3. Multiple indexes on the same column
    Before Oracle Database 12c, we could not have multiple indexes on a single column. In Oracle Database 12c a column may have multiple indexes but all should be of different types. Like a column may have B-Tree and BitMap Index both. But, only one index will be used at a given time.

    4. VARCHAR2 length up to 32767
    Form Oracle Database 12c, a varchar2 column can be sized upto 32767, which was earlier 4000. The maximum size of the VARCHAR2, NVARCHAR2, and RAW data types has been increased from 4,000 to 32,767 bytes. Increasing the allotted size for these data types allows users to store more information in character data types before switching to large objects (LOBs).

    5. Top-N feature
    A Top-N query is used to retrieve the top or bottom N rows from an ordered set. Combining two Top-N queries gives you the ability to page through an ordered set
    Example:

    SQL> SELECT value
      2  FROM   mytable
      3  ORDER BY value DESC
      4  FETCH FIRST 10 ROWS ONLY;

    6. IDENTITY Columns
    In Oracle Database 12c, We can define Table columns with SQL keyword IDENTITY which is a American National Standards Institute (ANSI) SQL keyword. Which are auto-incremented at the time of insertion (like in MySQL).
    Example:

    SQL> create table my_table
      2  (
      3  id number generated as identity,
      4  name varchar2(100),
      5  email varchar2(100),
      6  password varchar2(100) INVISIBLE
      7  );

    7. With Clause improvement
    In Oracle 12c, we can declare PL/SQL functions in the WITH Clause of a select statement and use it as an ordinary function. Using this construct results in better performance as compared with schema-level functions
    Example:

    SQL> WITH
      2    FUNCTION f_test(n IN NUMBER) RETURN NUMBER IS
      3    BEGIN
      4      RETURN n+1;
      5    END;
      6  SELECT f_test(1)
      7  FROM   dual
      8  ;

    8. Cascade for TRUNCATE and EXCHANGE partition.
    With Oracle Database 12c, The TRUNCATE can be executed with CASCADE option which will also delete the child records.

    9. Online RENAME/MOVE of Datafiles
    Oracle Database 12c has provided a simple way to online renamed or moved data files by simply "ALTER DATABASE MOVE DATAFILE" command. Data files can also be migrated online from ASM to NON-ASM and NON-ASM to ASM easily now.

    Examples:

    Rename datafile: 
      SQL> ALTER DATABASE MOVE DATAFILE '/u01/oradata/indx.dbf' TO '/u01/oradata/indx_01.dbf';
    Move Datafile:   
      SQL> ALTER DATABASE MOVE DATAFILE '/u01/oradata/indx.dbf' TO '/u01/oradata/orcl/indx.dbf';
    NON-ASM to ASM:  
      SQL> ALTER DATABASE MOVE DATAFILE '/u01/oradata/indx.dbf' TO '+DISKGROUP_DATA01';

    10. Move table partition to different Tablespace online
    From Oracle 12c, it become very easy to move Table Partition to different tablespace and does not require complex steps
    Example:

      SQL> ALTER TABLE MY_LARGE_TABLE MOVE PARTITION MY_LARGE_TABLE_PART1 TO TABLESPACE USERS_NEW;


    11. Temporary Undo
    Before Oracle Database 12c, undo records of temporary tables used to be stored in undo tablespace. With the temporary undo feature in Oracle Database 12c, the undo records of temporary tables can now be stored in a temporary table instead of stored in undo tablespace. The main benefits of temporary undo are 1) Low undo tablespace usages 2) less redo data generation. For using this feature Compatibility parameter must be set to 12.0.0 or higher and TEMP_UNDO_ENABLED initialization parameter must be Enabled.

    12. DDL logging
    By using the ENABLE_DDL_LOGGING initiation parameter in Oracle Database 12c, we can now log the DDL action into xml and log files to capture when the drop or create command was executed and by whom under the $ORACLE_BASE/diag/rdbms/DBNAME/log|ddl location. The parameter can be set at the database or session levels.
    Example:

      SQL> ALTER SYSTEM SET ENABLE_DDL_LOGGING=TRUE;


    13. PGA_AGGREGATE_LIMIT parameter
    Oracle Database 12c has provided us a way to limit PGA by PGA_AGGREGATE_LIMIT parameter. Before Oracle Database 12c there was no option to limit and control the PGA size. Oracle will automatically abort the session that holds the most untenable PGA memory when PGA limits exceeds the defined value.

    14. SQL statement in RMAN
    From Oracle Database 12c, we can execute any SQL and PL/SQL commands in RMAN without SQL prefix
    Example:

      RMAN> SELECT username,machine FROM v$session;

    15. Turning off redo for Data Pump the import
    The new TRANSFORM option, DISABLE_ARCHIVE_LOGGING, to the impdp command line causes Oracle Data Pump to disable redo logging when loading data into tables and when creating indexes. This feature provides a great relief when importing large tables, and reduces the excessive redo generation, which results in quicker imports. This attribute applies to tables and indexes.
    Example:

      impdp directory=mydir dumpfile=mydmp.dmp logfile=mydmp.log TRANSFORM=DISABLE_ARCHIVE_LOGGING:Y

    Unix for the DBA

    0 comments
    How to kill all similar processes with single command (in this case opmn)

    ps -ef | grep opmn |grep -v grep | awk ‘{print $2}’ |xargs -i kill -9 {}
    Locating Files under a particular directory
    find . -print |grep -i test.sql
     Using AWK in UNIX
    To remove a specific column of output from a UNIX command – for example to determine the UNIX process Ids for all Oracle processes on server (second column)
    ps -ef |grep -i oracle |awk '{ print $2 }'
    Changing the standard prompt for Oracle Users
    Edit the .profile for the oracle user
    PS1="`hostname`*$ORACLE_SID:$PWD>"
     Display top 10 CPU consumers using the ps command
    /usr/ucb/ps auxgw | head -11
     Show number of active Oracle dedicated connection users for a particular ORACLE_SID
    ps -ef | grep $ORACLE_SID|grep -v grep|grep -v ora_|wc -l
     Display the number of CPU’s in Solaris
    psrinfo -v | grep "Status of processor"|wc -l
    Display the number of CPU’s in AIX
    lsdev -C | grep Process|wc -l
    Display RAM Memory size on Solaris
    prtconf |grep -i mem
    Display RAM memory size on AIX
    First determine name of memory device
    lsdev -C |grep mem
    then assuming the name of the memory device is ‘mem0’
    lsattr -El mem0
    Swap space allocation and usage
    Solaris : swap -s or swap -lAix : lsps -a
     Total number of semaphores held by all instances on server
    ipcs -as | awk '{sum += $9} END {print sum}'
    View allocated RAM memory segments
    ipcs -pmb
    Manually deallocate shared memeory segments
    ipcrm -m '<ID>'
     Show mount points for a disk in AIX
    lspv -l hdisk13
     Display amount of occupied space (in KB) for a file or collection of files in a directory or sub-directory
    du -ks * | sort -n| tail
    Display total file space in a directory
    du -ks .
     Cleanup any unwanted trace files more than seven days old
    find . *.trc -mtime +7 -exec rm {} \;
     Locate Oracle files that contain certain strings
    find . -print | xargs grep rollback
     Locate recently created UNIX files (in the past one day)
    find . -mtime -1 -print
     Finding large files on the server (more than 100MB in size)
    find . -size +102400 -print
    Crontab :
    To submit a task every Tuesday (day 2) at 2:45PM
    45 14 2 * * /opt/oracle/scripts/tr_listener.sh > /dev/null 2>&1
    To submit a task to run every 15 minutes on weekdays (days 1-5)
    15,30,45 * 1-5 * * /opt/oracle/scripts/tr_listener.sh > /dev/null 2>&1
    To submit a task to run every hour at 15 minutes past the hour on weekends (days 6 and 0)
    15 * 0,6 * * opt/oracle/scripts/tr_listener.sh > /dev/null 2>&1

    Oracle library cache tuning – A Real Case Study.

    1 comments
    Library cache tuning – A Real Case Study.

    Scenario :
    Users started complaining about very poor application performance, hung and incomplete transactions. Some severity one ticket for immediate action.
    Environment :
    Oracle 10g (10.2.0.4) Two node RAC, About 15 different Java and .net legacy applications.
    Highly transactional.

    11 Gig Shared pool
    16 Gig DB cache

    Availability : 24*7, Outage unacceptable to business
    I made some observations, thought it would be a nice idea to share them with you all.
    Here are the citation from AWR report(1 hr.) during the problem period.
    Snap Id Snap Time Sessions Cursors/Session
    Begin Snap: 39718 07-Jun-11 05:00:13 438 66.3
    End Snap: 39719 07-Jun-11 06:00:19 651 64.4
    Elapsed:   60.09 (mins)
    DB Time:   490.75 (mins)

    • Very poor response time can be visible from the differences between db time and elapsed time – No wonder why users were complaining.
    Load Profile :
    Redo size: 698,307.96 9,249.30
    Logical reads: 187,227.45 2,479.88
    Block changes: 4,078.58 54.02
    Physical reads: 29.63 0.39
    Physical writes: 79.30 1.05
    User calls: 2,638.29 34.94
    Parses: 1200.23 5.81
    Hard parses: 52.84 0.70
    Sorts: 230.95 3.06
    Logons: 0.91 0.01
    Executes: 601.64 7.97
    Transactions: 75.50

    • Parse count is just half of user calls, so every two user call there is a parse request.Dammn bad, this going to be a huge CPU consumer.
    • Hard parses per second is 52.84, if I said very bad for parse count, I should say very very very bad for hard parse – this is very much resource intensive. Unacceptable !!
    Instance Efficiency :
    Buffer Nowait %: 100.00 Redo NoWait %: 100.00
    Buffer Hit %: 99.99 In-memory Sort %: 100.00
    Library Hit %: 91.75 Soft Parse %: 87.95
    Execute to Parse %: 27.13 Latch Hit %: 99.97
    Parse CPU to Parse Elapsd %: 2.17 % Non-Parse CPU: 97.35

    • Low execute to parse ratio denotes CPU is significantly busy in parsing. Soft Parse% showing, most of the parse are soft parses. It means we should focus on soft parsing activity.
    • Parse CPU to Parse Elapsed % is quite low, which indicate  some bottleneck is there related to parsing. It could be a side-effect of huge parsing pressure. Like CPU cycles are not available.
    • Library Hit % is very poor, it should be atleast above 95% .
    Top 5 Timed Events :
    latch: library cache 6,470 16,152 2,496 54.9 Concurrency
    CPU time   11,675   39.7
    log file sync 193,236 1,109 6 3.8 Commit
    log file parallel write 224,479 795 4 2.7 System I/O
    db file sequential read 38,110 386 10 1.3 User I/O

    • High wait on latch: library cache . So very clear that slow performance is due to the contention in Library cache.
    • Also looked at SQL ordered by Parse Calls and SQL ordered by Version Count. That pin point the issue at library chache.
    Whats next ? ?
    Above observations indicate that there is some serious problem to share the sqls. It could be a result of bad application code wihout bind variables . Each calls are going for a parse – either soft or hard and no caching. The obvious advantage to caching cursors by session is reduced parse times, which can leads to faster overall execution times.
    Caching Caching .. Lets look at the Oracle caching parameters now. The value was
    cursor_sharing= similar
    open_cursors= 3000
    session_cached_cursors= 100
    Two things I played around was cursor_sharing and session_cached_cursors. I can ignore open_cursors for time being as it is already high for my environment.
    I have chosen to use SESSION_CACHED_CURSORS to help out in this scenario as an application that is continually closing and reopening cursors, you can monitor its effectiveness via two more statistics in v$sesstat. The statistic “session cursor cache hits” reflects the number of times that a statement the session sent for parsing was found in the session cursor cache, meaning it didn’t have to be reparsed and your session didn’t have to search through the library cache for it. You can compare this to the statistic “parse count (total)”; subtract “session cursor cache hits” from “parse count (total)” to see the number of parses that actually occurred.
    v$sesstat also provides a statistic to monitor the number of cursors each session has in its session cursor cache.
    –session cached cursors, by session
    select a.value, s.username, s.sid, s.serial#
    from v$sesstat a, v$statname b, v$session s
    where a.statistic# = b.statistic#  and s.sid=a.sid
    and b.name = ‘session cursor cache count’ ;

    –session cached cursor usage.
    select a.value curr_cached, p.value max_cached, s.username, s.sid, s.serial#
    from v$sesstat a, v$statname b, v$session s, v$parameter2 p
    where a.statistic# = b.statistic#  and s.sid=a.sid
    and p.name=’session_cached_cursors’
    and b.name = ‘session cursor cache count

    Above query gave a result that CUR_CACHED=MAX_CACHED . If the session cursor cache count is maxed out, session_cursor_cache_hits is low compared to all parses, and you suspect that the application is re-submitting the same queries for parsing repeatedly, then increasing SESSION_CURSOR_CACHE_COUNT will help with latch contention and can give boost to performance.
    One fix is ready now i.e increase SESSION_CACHED_CURSOR from 100 to 300 (Decided to put 300 first and  monitor the session cursor caching).
    We had a high hard parse rate as well – So the second parameters to play around was CURSOR_SHARING. For poorly coded application Oracle highly recomend to keep CURSOR_SHARING=FORCE . Also there are few bugs reported with CURSOR_SHARING=SIMILAR option as well as it is Deprecated from 11g onwards. [ANNOUNCEMENT: Deprecating the cursor_sharing = ‘SIMILAR’ setting [MOS Note ID 1169017.1]]
    Conclusion :
    Changed initialization parameters for session cached cursors and cursor sharing hence reduced library cache contention by avoiding parse calls and releasing cpu cycle.
    I have changed to
    CURSOR_SHARING=FORCE
    SESSION_CACHED_CURSOR=300

    Certaily you can dynamicaly do CURSOR_SHARING=FORCE
    ALTER SYSTEM SET CURSOR_SHARING=FORCE SCOPE=BOTH;
    But SESSION_CACHED_CURSOR is not dynamic and you need a bounce to reflects this. I was in trouble for this because it is a zero tolerence system and outage should be planned a month before. I cannot wait until that to tune this perf issue. Again there is anotehr back door method to implement SESSION_CACHED_CURSOR to get effect, but that’s a topic for another blog – you can see it in another post here ..
    I have mentioned at the very start cursor parameters that can introduce  surprises. Yes, very true. After these two changes all the library cache contention was vanished.
    Hard parses reduced from 58 per sec to 1 or 0 per sec. Library hit ratio become 98% and soft parse ration become 99%  and response time become jet fast.

    Oracle Performance Tuning – AWR Queries

    0 comments

    AWR query to find load spikes

    select
    to_char(round(sub1.sample_time, ‘HH24′), ‘YYYY-MM-DD HH24:MI’) as sample_hour,
    round(avg(sub1.on_cpu),1) as cpu_avg,
    round(avg(sub1.waiting),1) as wait_avg,
    round(avg(sub1.active_sessions),1) as act_avg,
    round( (variance(sub1.active_sessions)/avg(sub1.active_sessions)),1) as act_var_mean
    from
    ( — sub1: one row per ASH/AWR sample observation
    select
    sample_id,
    sample_time,
    sum(decode(session_state, ‘ON CPU’, 1, 0))  as on_cpu,
    sum(decode(session_state, ‘WAITING’, 1, 0)) as waiting,
    count(*) as active_sessions
    from
    dba_hist_active_sess_history
    where
    sample_time > sysdate – (&hours/24)
    group by
    sample_id,
    sample_time
    ) sub1
    group by
    round(sub1.sample_time, ‘HH24′)
    order by
    round(sub1.sample_time, ‘HH24′)
    ;
    SAMPLE_HOUR CPU_AVG   WAIT_AVG ACT_AVG ACT_VAR_MEAN
    —————– ———- ———- ———- ————
    2008-07-26 04:00         1.5          0        1.5           .4
    2008-07-26 05:00         1.5         .1        1.5           .5
    2008-07-26 06:00         1.5         .1        1.6           .5
    2008-07-26 07:00         1.6          0        1.6           .6
    2008-07-26 08:00         5.5         .1        5.6         14.2
    2008-07-26 09:00         1.5         .1        1.6           .6
    2008-07-26 10:00           2         .3        2.3            1
    2008-07-26 11:00         1.8         .2        1.9           .6
    2008-07-26 12:00         1.9         .3        2.1           .6
    2008-07-26 13:00         1.5         .1        1.6           .5
    2008-07-26 14:00         1.5         .1        1.6           .4
    2008-07-26 15:00         1.5         .2        1.7           .5
    2008-07-26 16:00         1.5         .1        1.7           .5
    2008-07-26 17:00         2.1         .1        2.3          1.2
    2008-07-26 18:00        16.4         .4       16.8         52.2
    2008-07-26 19:00         1.7         .1        1.8           .6
    2008-07-26 20:00         3.5         .1        3.6          4.1
    2008-07-26 21:00         2.3         .1        2.4            1
    2008-07-26 22:00         2.7         .4        3.1          1.3
    2008-07-26 23:00           2         .4        2.4           .6
    2008-07-27 00:00         2.1         .2        2.4           .7
    2008-07-27 01:00           3         .1        3.1          1.9
    2008-07-27 02:00           2         .1        2.1           .9
    2008-07-27 03:00         1.5          0        1.6           .5
    2008-07-27 04:00         1.6         .1        1.6           .5
    2008-07-27 05:00         1.3         .1        1.4           .4
    2008-07-27 06:00           2          0        2.1          1.3
    2008-07-27 07:00         1.6          0        1.7           .7
    Here we found two spikes ..
    • No! short spikes:
    • might not generate user complaints,
    • might be ignored by monitors,
    • but are in fact problems
    • No! Very high AAS values always a problem
    • Use of variance to find skew minimizes limits of aggregated statistics
    • Enough detail in AWR/ASH to find bottlenecks
    • Perhaps you should go fishing sometimes!
    • Month’s worth of AWR makes this easy

    Aggregate statistics

    select
    sub.sql_id,
    sub.seconds_since_date,
    sub.execs_since_date,
    sub.gets_since_date
    from
    ( — sub to sort before rownum
    select
    sql_id,
    round(sum(elapsed_time_delta)/1000000) as seconds_since_date,
    sum(executions_delta) as execs_since_date,
    sum(buffer_gets_delta) as gets_since_date
    from
    dba_hist_snapshot natural join dba_hist_sqlstat
    where
    begin_interval_time > to_date(‘&start_YYYYMMDD’,'YYYY-MM-DD’)
    group by
    sql_id
    order by
    2 desc
    ) sub
    where
    rownum < 30
    ;

    Enter value for start_yyyymmdd: 2010-03-01
    old  16:     begin_interval_time > to_date(‘&&start_YYYYMMDD’,'YYYY-MM-DD’)
    new  16:     begin_interval_time > to_date(’2010-03-01′,’YYYY-MM-DD’)

    SQL_ID SECONDS_SINCE_DATE   EXECS_SINCE_DATE GETS_SINCE_DATE
    ————- —————— —————- —————
    1wc4bx0qap8ph              30617            21563       284059357
    6hudrj03d3w5g              23598         20551110       472673974
    6tccf6u9tf891              18731            33666       457970700
    2u874gr7qz2sk              15175            29014       370715705
    fpth08dw8pyr6              14553             2565        36018228
    1jt5kjbg7fs5p              11812            12451      2004271887
    2f75gyksy99zn              10805            21529       567776447
    ccp5w0adc6xx9               5222             6167       222949142
    gn26ddjqk93wc               3568        114084711       248687700
    b6usrg82hwsa3               2888                2       165621244
    ctaajfgak033z               2391                4        66644336
    7zwhhjv42qmfq               2197           592377        31495833
    96v8tzx8zb99s               2152             6167       117875813
    cxjsw79bprkm4               1526           396277       137413869
    f2awk3951dcxv               1500             3462        35853709
    fzmzt8mf2sw16               1421              311        44067742
    01bqmm3gcy9yj               1329           299778        23504806

    Non-uniform statistics

    select
    sub1.sql_id,
    round(avg(sub1.seconds_per_hour)) as avg_seconds_per_hour,
    round(variance(sub1.seconds_per_hour)/avg(sub1.seconds_per_hour)) as var_over_mean,
    count(*) as ct
    from
    ( — sub1
    select
    snap_id,
    sql_id,
    elapsed_time_delta/1000000 as seconds_per_hour
    from
    dba_hist_snapshot natural join dba_hist_sqlstat
    where
    – look at recent history only
    begin_interval_time > sysdate – &&days_back
    and
    executions_delta > 0
    ) sub1
    group by
    sub1.sql_id
    having
    – only queries that consume 10 seconds per hour on the average
    avg(sub1.seconds_per_hour) > 10
    and
    – only queries that run 50% of the time, assumes hourly snapshots too
    count(*) > ( &&days_back * 24) * 0.50
    order by
    3;

    Example (sqlstat, high variance): obvious outlier with high variance, but not the most elapsed time
    SQL_ID AVG_SECONDS_PER_HOUR      VAR_OVER_MEAN CT
    ————- ——————– ————- ———-
    72wuyy9sxdmpx                   41             7        167
    bgpag6tkxt34h                   29            12        167
    crxfkabz8atgn                   14            14        167
    66uc7dydx131a                   16            16        167
    334d2t692js2z                   36            19        167
    6y7mxycfs7afs                   23            20        167
    36vs0kyfmr0qa                   17            21        129
    fp10bju9zh6qn                   45            22        167
    fas56fsc7j9u5                   10            22        167
    61dyrn8rjqva2                   17            22        129
    4f8wgv0d5hgua                   31            23        167
    7wvy5xpy0c6k5                   15            23        151
    8v59g9tn46y3p                   17            24        132
    9pw7ucw4n113r                   59            27        167
    41n1dhb0r3dhv                   32            32        120
    8mqxjr571bath                   35            38        117
    8jp67hs2296v3                   46           154        128
    afdjq1cf8dpwx                   34           184        150
    6n3h2sgxpr78g                  454           198        145
    g3176qdxahvv9                   42           383         92
    b72dmps6rp8z8                  209          1116        167
    6qv7az2048hk4                 3409         50219        167

    Behavior of a specific SQL over time

    select
    snap_id,
    to_char(begin_interval_time,’YYYY-MM-DD HH24:MI’) as begin_hour,
    executions_delta as execs_per_hour,
    buffer_gets_delta as gets_per_hour,
    round(buffer_gets_delta/executions_delta) as gets_per_exec,
    round(elapsed_time_delta/1000000) as seconds_per_hour
    from
    dba_hist_snapshot natural join dba_hist_sqlstat
    where
    begin_interval_time between to_date(‘&start_hour’, ‘YYYY-MM-DD HH24:MI’)
    and to_date(‘&end_hour’,   ‘YYYY-MM-DD HH24:MI’)
    and
    sql_id = ‘&sql_id’
    and
    executions_delta > 0
    order by
    snap_id
    ;

    Example (sqlstat, one sql_id): sustained high execution rates, occasional wait pile-ups
    SNAP_ID BEGIN_HOUR    EXECS_PER_HOUR GETS_PER_HOUR   GETS_PER_EXEC SECONDS_PER_HOUR
    ———- —————- ————– ————- ————- —————-
    1978 2008-04-07 20:00         140449        540639             4          11
    1979 2008-04-07 21:00         124142        477807             4          17
    1980 2008-04-07 22:00          90568        347286             4            20
    1981 2008-04-07 23:00          83287        323100             4            30
    1982 2008-04-08 00:00          57094        221166             4            49
    1983 2008-04-08 01:00          43925        170594             4             7
    1984 2008-04-08 02:00          38596        150277             4             4
    1985 2008-04-08 03:00          35710        139576             4              4
    1986 2008-04-08 04:00          29700        115429             4               4
    1987 2008-04-08 05:00          43666        170520             4              5
    1988 2008-04-08 06:00          50755        197116             4               6
    1989 2008-04-08 07:00          80371        310652             4               9
    1990 2008-04-08 08:00         111924        431470             4             11
    1991 2008-04-08 09:00         127154        489649             4             27
    1992 2008-04-08 10:00         139270        536962             4            25
    1993 2008-04-08 11:00         128697        496013             4             18
    1994 2008-04-08 12:00         158739        613554             4      45287
    1995 2008-04-08 13:00         152515        587605             4            40
    1996 2008-04-08 14:00         144389        555770             4        37589
    1997 2008-04-08 15:00         149278        575827             4           26
    1998 2008-04-08 16:00         140632        542580             4           12
    1999 2008-04-08 17:00         120113        462665             4            11
    2000 2008-04-08 18:00         121394        468684             4            12
    2001 2008-04-08 19:00         127948        493084             4            13


    System statistic history

    select
    stat_start.snap_id,
    to_char(snap.begin_interval_time,’YYYY-MM-DD HH24:MI’) as begin_hour,
    stat_end.value – stat_start.value as delta_value
    from
    dba_hist_sysstat stat_start,
    dba_hist_sysstat stat_end,
    dba_hist_snapshot snap
    where
    – assumes the snap_id at the end of the interval
    – is one greater than the snap_id at the start ofthe interval
    stat_end.snap_id = stat_start.snap_id + 1
    and
    – otherwise, we join stat_end and stat_start on exact matches of the remaining PK columns
    (     stat_end.dbid = stat_start.dbid
    and stat_end.instance_number = stat_start.instance_number
    and stat_end.stat_name = stat_start.stat_name
    )
    and
    – filter for the statistic we are interested in (might want to add date range filter too)
    stat_end.stat_name = ‘&stat_name’
    and
    – join stat_start to snap on FK
    (     stat_start.snap_id = snap.snap_id
    and stat_start.dbid = snap.dbid
    and stat_start.instance_number = snap.instance_number
    )
    order by
    stat_start.snap_id
    ;

    SQL> @sys-stat-hist.sql
    Enter value for stat_name: DB time
    old  27:    stat_end.stat_name = ‘&stat_name’
    new  27:    stat_end.stat_name = ‘DB time’

    SNAP_ID BEGIN_HOUR       DELTA_VALUE
    ———- —————- ———–
    4159 2010-07-07 17:00     2089225
    4160 2010-07-07 18:00     1505607
    4161 2010-07-07 19:00    31188489
    4162 2010-07-07 20:00    24930866
    4163 2010-07-07 21:00     1828924
    4164 2010-07-07 22:00     1258286
    4165 2010-07-07 23:00      396076
    4166 2010-07-08 00:00      688963
    4167 2010-07-08 01:00      354481
    4168 2010-07-08 02:00      411555
    4169 2010-07-08 03:00      325875
    4170 2010-07-08 04:00      328739
    4171 2010-07-08 05:00      447432
    4172 2010-07-08 06:00      838585
    4173 2010-07-08 07:00     1138196
    4174 2010-07-08 08:00     1852437
    4175 2010-07-08 09:00    68736587
    4176 2010-07-08 10:00      739175
    4177 2010-07-08 11:00      647451
    4178 2010-07-08 12:00      702787
    4179 2010-07-08 13:00     3722000
    4180 2010-07-08 14:00      712481
    4181 2010-07-08 15:00      475688
    4182 2010-07-08 16:00      416013

    Copyright © ORACLE ONLINE DBA
    Developed By Pavan Yennampelli